# **Casos Clínicos**

# Síndrome de Klinefelter – Caso Clínico e Revisão da Literatura

José Eduardo Carrasquinho\*, M. Ferreira Coelho\*\*, Miguel Lourenço\*, Bruno Graça\*

Serviço de Urologia – Hospital Fernando Fonseca – Director: Dr. Carrasquinho Gomes – Amadora

## Resumo

O síndrome de Klinefelter apresenta, na maioria dos casos, um quadro clínico caracterizado por hipogonadismo hipergonadotrófico, azoospermia, atrofia testicular de consistência firme, hipodesenvolvimento dos caracteres sexuais secundários e ginecomastia. Apresentamos um doente de 33 anos que recorre à consulta por orquialgia direita, sem outras queixas. No exame físico apenas se constatou atrofia testicular de consistência firme. Efectuamos uma breve revisão da literatura a respeito do tema.

# **Abstract**

# Correspondência: José Eduardo Neto Carrasquinho e-mail: jecarrasquinho@ netcabo.pt

The klinefelter's syndrome is characterized, in the majority of patients, by a clinical picture of hypergonadotropic hypogonadism, azoospermia, small firm testis, underdevelopment of secondary sex characteristics and gynaecomastia. We state a case report of a 33 year-old male who presented with right orchialgia, without other complains. The physical exam only revealed small firm testis. The authors review the scientific literature on the subject.

Keywords: Hypergonadotropic hypogonadism; Infertility; Klinefelter's syndrome

# Introdução

A incidência de anomalias cromossómicas em homens inférteis é de 5 a 6% [1]. Destas 4.2% reportamsea aos cromossomas sexuais e 1.5% são autossómicas. No entanto, na população geral esta incidência é de apenas 0.14 e 0.25% respectivamente com um total de 0.38% de anomalias cromossómicas [2]. A probabilidade de uma anomalia cromossómica aumenta com o grau

de deficiência na espermatogénese e neste contexto deverá ser oferecido um estudo de cariótipo a todos os homens que procurem tratamento de fertilidade com recurso a técnicas de reprodução assistida [3]. O síndrome de Klinefelter, descrito desde 1942, resulta na maioria dos casos de uma alteração genética com cariótipo 47,XXY. Não obstante existem outras variantes genéticas raras - 48,XXYY; 48,XXXY; 49,XXXXYY; 49,XXXXYY.

<sup>\*</sup> Interno Complementar de Urologia

<sup>\*\*</sup> Assistente Hospitalar de Urologia

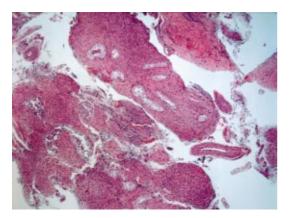



Figura I

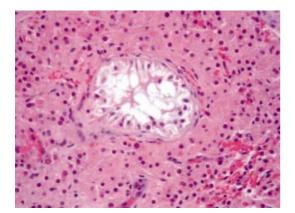



Figura 2

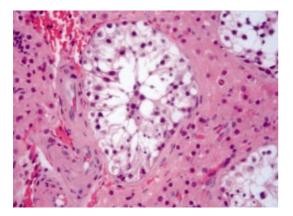



Figura 3

XY/47,XXY; 46,XY/48,XXXY e 47,XXY/48,XXXY) e outros muito invulgares que resultam da adição de cromossomas X estruturalmente anómalos como por exemplo 47,X,i(Xq)Y e 47,X,del(X)Y. Esta é a alteração nos cromossomas sexuais mais comum, afectando entre 1/500 e 1/1000 dos nascimentos dependendo das séries. Destes apenas 25% são diagnosticados durante a vida e menos de 10% antes da puberdade [4,5]. O fenótipo mais comum consiste num hipogonadismo hipergonadotrófico, azoospermia, atrofia testicular de consistên-

cia firme, hipodesenvolvimento dos caracteres sexuais secundários geralmente associado a ginecomastia e desproporção morfológica entre o tronco e os membros. Nas variantes mais extremas observam-se outras anomalias muito marcadas, particularmente a nível neuropsiquiátrico.

# Caso Clínico

Apresentamos um homem de 33 anos de idade cujo motivo de consulta foi um quadro de orquialgia direita sem outra sintomatologia. Não apresentava antecedentes pessoais de relevo clínico e ao exame físico apenas se constatou uma diminuição bilateral e simétrica do volume testicular de consistência firme, com normal diferenciação dos caracteres sexuais secundários e sem evidência de ginecomastia ou quaisquer outras alterações relevantes. O ecodoppler testicular apenas revelou nódulo hipoecogénico central do testículo direito e redução do volume testicular, medindo o testículo direito 1,31\* 1,07cm e o esquerdo 1,73\*0,79cm. O estudo analítico evidenciou uma elevação das gonadotrofinas com LH 28,51 mUI/ml e FSH 40,9 mUI/ml, níveis de testosterona normais (391 ng/dl) e ligeiro aumento da prolactina (26,84 ng/dl) sendo os restantes parâmetros normais, nomeadamente os marcadores tumorais. O espermograma revelou azoospermia. Foi efectuada uma RMN cerebral que não revelou alterações. Propôs-se ao doente uma biópsia testicular para esclarecimento e avaliação prognóstica da sua azoospermia tendo este concordado e que revelou histologicamente uma hiperplasia de células de Leydig, hialinização dos túbulos seminíferos e paragem da espermatogénese na fase de espermatídeo [fig. 1-3]. Perante o quadro clínico e a vontade do doente de posteriormente recorrer a técnicas de reprodução assistida foi pedido o cariótipo que revelou 47,XXY [fig. 4,5].

## Discussão

O mecanismo determinante da deficiência androgénica não é ainda totalmente conhecido e cerca de 20% dos doentes apresentam níveis de testosterona normais. Esta aumenta durante a adolescência mas por volta dos 15 anos os seus valores descem abaixo do limiar da normalidade [6]. É variável o grau de disfunção das células de Leydig cujo número relativo em geral se apresenta aumentado simulando um tumor de células de Leydig [7]. A manifestação cardinal deste síndrome

73

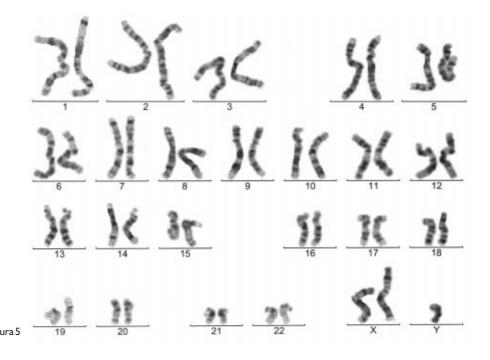

resulta da incapacidade das células germinativas sobreviverem em testículos aneuploides, com a puberdade a desencadear a sua extinção ao invés da sua normal proliferação para colonizar os túbulos seminíferos. Assim é habitual a hialinização, esclerose e atrofia dos túbulos seminíferos e ausência quase completa de células germinativas [8]. Deste modo os testículos são firmes em contraste com a consistência mole dos mesmos nos doentes em que o dano testicular ocorreu após o início da espermatogénese resultando no colapso dos túbulos seminíferos. Representa uma importante causa de infertilidade associada a 14% das azoospermias [9]. A ginecomastia está presente em 80 a 90% dos casos em alguma fase da vida, com alterações associadas variáveis no desenvolvimento dos caracteres sexuais secundários, essencialmente devido a um aumento do ratio estradiol/testosterona. Em cerca de 80% a 90% dos doentes o cariótipo é do tipo 47,XXY e estima-se que 10 a 20% dos pacientes apresentem mosaicismo (47,XXY/46,XY), com formas mais leves da patologia. Podemos admitir um efeito "gene-dose", em relação com o número de cromossomas em excesso, no que diz respeito à gravidade das alterações físicas e em particular às disfunções neuropsiquiátricas destes doentes [10]. Estão descritas diversas co-morbilidades associadas a este síndrome sendo o risco global de uma hospitalização superior em 69% comparativamente à população geral [11]. As patologias mais comummente associadas a este síndrome são: malformações congénitas, diabetes, anemia, osteoporose, hipotiroidismo, infecções do trato urinário e especialmente algumas



Figura 4

neoplasias nomeadamente da mama, tumores de células germinativas retroperitoneais e mediastínicos, do pulmão e linfoma não-hodgkin [11,12]. Dois estudos destinados a avaliar a mortalidade global em doentes com este síndroma estimaram um risco acrescido de morte por carcinoma da mama e pulmão, diabetes, doenças vasculares, doença cardíaca não isquémica, AVC, doenças respiratórias e isquémia intestinal, com uma esperança de vida 2. I anos inferior à média geral [13,14].

O tratamento fundamenta-se na terapia de reposição hormonal com testosterona, de acordo com as exigências clínicas de cada caso. Esta terapêutica deve ser iniciada o mais cedo possível afim de minorar os sinto-



mas e as sequelas da deficiência androgénica, não tendo no entanto qualquer efeito positivo na fertilidade [15, 16]. Dado que a ginecomastia não é influenciada pela terapêutica hormonal, deve efectuar-se o encaminhamento do doente para tratamento por cirurgia plástica [17]. Em alguns casos é possível proceder a técnicas de reprodução assistida com sucesso, mesmo em doentes sem mosaicismo, tendo sido descrita uma frequência de gravidez bem sucedida superior a 20% [18]. Todavia os doentes com síndrome de Klinefelter apresentam uma probabilidade não desprezível de produzir gâmetas 47,XXY ou com outras alterações cromossómicas, presumivelmente devido ao comprometimento do ambiente testicular, chegando a incidência destas aos 20% em algumas séries [19,20]. Deste modo, antes de ser realizada fertilização in-vitro/injecção intracitoplasmática de espermatozóide, deverá ser efectuado um diagnóstico pré-implantação ou amniocentese com análise de cariótipo se o primeiro for impossível. [21].

# Conclusão

Trata-se de uma apresentação algo tardia e pouco comum desta patologia, que segundo dados recentes 75% dos casos não são diagnosticados e cuja frequência não é de forma alguma desprezível como causa de infertilidade. Em resultado das apresentações clínicas atípicas deste síndrome é necessário um elevado grau de suspeição e a caracterização do cariótipo de indivíduos com azoospermia que procurem técnicas de reprodução assistida.

# **Bibliografia**

- Johnson MD. Genetic risks of intracytoplasmic sperm injection in the treatment of male infertility: recommendations for genetic counseling and screening. Fertil Steril. 1998; 70: 397–411.
- Van Assche EV, Bonduelle M, Tournaye H, Joris H, Verheyen G, Devroey P, et al.. Cytogenetics of infertile men. Hum Reprod. 1996; 11 (Suppl 4): 1–24.
- Mau-Holzmann UA. Somatic chromosomal abnormalities in infertile men and women. Cytogenet Genome Res. 2005; 111 (3-4): 317-36.
- Nielsen J, Wohlert M 1990 Sex chromosome abnormalities found among 34,910 newborn children: results from a 13year incidence study in Aarhus, Denmark. Birth Defects Orig Artic Ser 26: 209–223
- Bojesen A, Juul S, Gravholt CH 2003 Prenatal and postnatal prevalence of Klinefelter syndrome: a National Registry Study. J Clin Endocrinol Metab 88: 622–626

- Salbenblatt JA, Bender BG, Puck MH, Robinson A, Faiman C, Winter JS. Pituitary-gonadal function in Klinefelter syndrome before and during puberty. Pediatr Res 1985; 19: 82–86.
- Wang C, Baker HW, Burger HG, De Kretser DM, Hudson B. Hormonal studies in men with Klinefelters syndrome. Clin Endocrinol Oxf. 1975;4:399–411.
- Aksglaede L, Wikstrom AM, Rajpert-De Meyts E, Dunkel L, Skakkebaek NE, Juul A. Natural history of seminiferous tubule degeneration in Klinefelter syndrome. Hum Reprod Update. 2006 Jan-Feb; 12(1):39-48. Epub 2005 Sep 19.
- Therman ESM. Human Chromosomes: Structure, Behavior and Effects. New York: Springer-Verlag; 1993
- Delisi LE, Maurizio AM, Svetina C, Ardekani B, Szulc K, Nierenberg J, Leonard J, Harvey PD 2005 Klinefelter's syndrome (XXY) as a genetic model for psychotic disorders. Am J Med Genet B Neuropsychiatr Genet 135:15–23
- Bojesen A, Juul S, Birkebaek NH, Gravholt CH. Morbidity in Klinefelter Syndrome: A Danish Register Study Based on Hospital Discharge Diagnoses. J Clin Endocrinol Metab. 2006 Apr; 91 (4): 1254-60. Epub 2006 Jan 4
- A.J. Swerdlow, M.J. Schoemaker, C.D. Higgins, A.F. Wright, P.A. Jacobs. Cancer Incidence and Mortality in Men With Klinefelter Syndrome: A Cohort Study. J Natl Cancer Inst, 97: 1204–1210, 2005
- Swerdlow AJ, Hermon C, Jacobs PA, Alberman E, Beral V, Daker M, Fordyce A, Youings S 2001 Mortality and cancer incidence in persons with numerical sex chromosome abnormalities: a cohort study. Ann Hum Genet 65: 177–188
- Price WH, Clayton JF, Wilson J, Collyer S, De Mey R 1985
   Causes of death in X chromatin positive males (Klinefelter's syndrome). J Epidemiol Community Health 39: 330–336
- 15. Nieschlag E, Behre HM. Clinical uses of testosterone in hypogonadism and other conditions. In: Nieschlag E, Behre HM, Nieschlag S, eds. Testosterone: action, deficiency, substitution, 3<sup>rd</sup> edn. Cambridge, UK: Cambridge University Press, 2004: 375–404.
- Matsumoto AM. Hormonal therapy of male hypogonadism. Endocrinol Metab Clin North Am 1994; 23: 857–75.
- 17. Nieschlag E, Behre HM, Meschede D, Kamischke A. Disorders at the testicular level. In: Nieschlag E, Behre HM, Nieschlag S, eds. Andrology: male reproductive health and dysfunction, 2nd edn. Berlin, Heidelberg, New York: Springer, 2000: 143–76.
- Denschlag D, Tempfer C, Kunze M, Wolff G, Keck C. Assisted reproductive techniques in patients with Klinefelter syndrome: a critical review. Fertil Steril. 2004 Oct; 82 (4): 775-9.
- Mroz K, Hassold TJ, Hunt PA. Meiotic aneuploidy in the XXY mouse: evidence that a compromised environment increases the incidence of meiotic errors. Hum Reprod 1999; 14: 1151–56.
- Guttenbach M, Kohn FM, Engel W, Schmid M. Meiotic nondisjunction of chromosomes 1, 17, 18, X and Y in men more than 80 years of age. Biol Reprod 2000; 63: 1727–29.
- Martini E, Geraedts JPM, Liebaers I, Land JA, Capitanio GL, Ramaekers FC, et al.. Constitution of semen samples from XYY and XXY males as analysed by in-situ hybridization. Hum Reprod. 1996; 11: 1638–1643.